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I. Introduction

The knowledge of the velocity distribution of a cesium (Cs) beam tube provides considerable
insight into the performance and alignment of the beam optics, which in turn affects the final per-
formance of the frequency standard. To measure these velocity distributions, early investigators
[1,2,3] developed a method that used the pulsed excitation of atomic beam devices that had
Ramsey-type interaction regions; this allowed for the observation of signals that were due to very
narrow velocity groups. A completely automatic system that employed this pulsed microwave
technique was set up in our laboratories. Figure 1 is a block diagram of the equipment used; the
set-up is described in detail in [4].

Figure 2 shows the operation of the Ramsey cavity with pulsed microwave power. For a
pulse period of T the velocity v selected is LIT, as shown. The pulse width T is chosen to be less
than the Cs ions' time of flight through the interaction regions, i.e., less than I/v.

In the process of making some of our early velocity-distribution measurements, we noticed
what appeared to be a periodic str icture on the distribution. At first we thought thiv structure to
be noise in the measurement system; however, as we improved our system further, we could see
that the structure was clearly there. The amplitude of this structure was found to be a function of
the pulse width. A typical example of the structure is shown in Figure 3, which is a plot of the Cs
velocity distribution p(v).
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Figure 1. Block Diagram of the System for Measuring the Velocity
Distribution of the Cs Beam Tube under Pulsed Microwave Condi-
tions
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Figure 2. Operation of the Ramsey Cavity with Pulsed Microwave
Power. The design of the Ramsey dual-interaction region allows
one to select the velocity of the atomic beam by setting the period T
of the microwave pulses.
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Figure 3. Measured Velocity Distribution for a Cs Beam Tube Us-
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II. Discussion

The structure shown in Figure 3 can be understood by looking at the pulse-power spectrum
and viewing the Ramsey response function as a filter for this spectrum. The Ramsey response for
the tube measured in Figure 3 is shown in Figure 4. For a pulse modulation function as shown in
Figure 5, the Fourier components are given by

F(t) = Acos23rmT  (1)
I T

n =0,1,2,3,.

where

r
Ao -T (2)

and

r sin'n. TA= 2 T  , n - 1,2,3,... (3)
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Figure 4. The CW Ramsey Patterns of All Seven Transitions in a
Cs Beam Tube
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Figure 5. Pulse Modulation Waveform

Each of these components modulates the rf carrier to give a pair of equal components at fo
_ nIT, where fo is the rf carrier Figure 6 shows this amplitude distribution (which we will refer

to as the sin xix distribution) in relation to the Ramscy response function. For the particular C-
field used for the tube, the separation in the Ramsey responses (i.e., the Zeeman frequency f,) was
38.86 kHz. The tube length L is - 12.5 cm; therefore, for a velocity of 150 m/sec, the modulation
frequency would be - 1200 Hz. There are therefore 38.86/1.2 - 33 components between the com-
ponent at fn and the component at fo + 38.86 kHz. Figure 6 is drawn for a T of about 10 4sec,
which places the first null in the sin x/x distribution at 100 kHz. For ease of illustration, the sep-
arations of the pulse components are depicted as much wider than is actually the case.

Figure 7 shows the location of the components for the central Ramsey transition as well as
fol the first upper transitinn Each of the components gives a maximum current and therefore, to
the extent that the principle of superposition applies, the output current will be a maximum. The
rf frequency is then swept and the component in the output current at the modulation frequency
fm (= 1/T) is then the measure of the density of the atoms in the beam at the velocity Vm. where

V, = Lf.. (4)

The carrier is then reset to fo and fro is changed slightly to fro + ,Af, to enable one to look at a
slightly different velocity, vm + Av. Then

Av = LAf. (5)

Note that the components close tofo change slowly; i.e., the first sideband pair moves by Af, the
second by 2Af, and so on. However, the components at the first upper transition move very rap-
idly; i.e., n is very high. If Af is chosen such that each of the components at the first upper transi-
tion moves by fmn, we will again have a maximum-currm:' situation. Then

. - n Af, (6)
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II (7)S=f,. (7

Hence

Av L- (8

In other words, from these very heuristic arguments a fine-structure velocity period of L2 If, has

been predicted.

We should note that although Av is not a function of the pulse period T, the amplitude of
the structure certainly will be. For example, a pulse that is much narrower than 1/fl will result in
a very broad power spectrum (such as that shown in Figure 6) and will consequently yield a large
amplitude in the fine structure. Conversely, if the pulse width is chosen so as to put the nulls in
the sin xix function at the upper Ramsey responses, the effect will be minimized, because a small-
er share of the sideband energ' is in the upper and lower Ramsey responses. This case is illus-
trated in Figure 8.
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Figure 8. Ramsey Response in Relation to the Pulsed Microwave
Spectrum for a Pulse Width that Places the Spectral Nulls at the
Centers of the Upper and Lower Ramsey Responses
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III. Measurements

The velocity measurement shown iM Figure 3 was for a pulse width of 37 Lsec. 'he Zeeman
frequency for this tube was 38.86 kHz and thus the second maximum in the sin x/x distribution is
very close to the first upper and lower Ramsey responses. This pulse width also places the third
and fourth maxima in the sin x/x distribution close to the second and third upper and lower
Ramsey responses. Therefore, there should be a clear fine structure, and indeed, this structure is
easily seen in Figure 3,

The same tube with the same C-field was measured for a very narrow (10 4sec) pulse. This
should also result in a clear fine structure. Figure 9(a) shows the results of this measurement. It
is a little surprising that the minima of the distribution are so close to zero. This might be be-
cause the polarity of the components in the first side lobe in the sin x/x distribution is reversed
from that in the main lobe. Choosing the pulse width such that the first null in the sin xlx distri-
bution is at the first upper and lower Ramsey responses should result in a minimum structure.
and in fact Figure 9(b) shows this result. Similarly, placing the second null at the upper and lower
Ramsey responses should also minimize this structure. Figure 9(c) confirms this.
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Figure 9. Measured Cs Velocity Distributions for Three Pulse
Widths and Peak Microwave Powers, as Indicated. (a) 10 lisec and
3300 'W, (b) 26 ;sec and 3300 giW, and (c) 52 gsec and 2000 gW
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Table 1: Fine-Structure Period Av for Three Cs Beam Tubes

Tube T, gsec f, kHz Measured, misec Calculated, m/sec
A 37 38.86 4.42 4.29

A 10 38.86 4.59 4.48
B 10 33.43 2.79 2.81

C 20 30.55 3.67 3.79

Table 1 presents a comparison of the measured and calculated [from Eq. (8)] fine-structure
periods for the cases shown in Figures 3 and 9(a), as well as for measurements made on two other
tubes from two other manufacturers. Each of the tubes is between 12 and 13 cm long. Note that
the two calculated Av for the two different T's for tube A were for two slightly different velocity
ranges, and hence are slightly different. In general, the agreement between the calculated and
measured A's is excellent.
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IV. Conclusions

A fine-structure feature on the velocity distribution of Cs beam tubes, as measured by the
pulsed microwave power technique, has been identified and quantified. This feature was shown
to result from the existence of large spectral components at the frequencies of the upper and low-
er Ramsey responses. It has been shown tha .t this feature can be minimized by choosing the pulse
width such that the nulls in the microwave power spectrum are at these upper and lower Ramsey
responses. Specifically, this means that the pulse width should be chosen to be an integer multi-
ple of the reciprocal of the Zeeman frequency. A simple theory was developed to enable one to
predict the fine-structure period as a function of the beam velocity, the tube length, and the Zee-
man frequency. This theory employed the concept of the Ramsey response pattern as an electri-
cal filter. This concept may be useful in other tube studies, e.g. those of modulation effects. Also,
measurements were presented that demonstrated close agreement between the measured fine-
structure period and the calculated one. Finally, it was shown that the fine structure virtually dis-
appears if the pulse period is chosen to be an integer multiple of the reciprocal of the Zeeman
frequency.
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